3.252 \(\int \frac{\cos (c+d x) (A+B \cos (c+d x))}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=89 \[ -\frac{2 a (A b-a B) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^2 d \sqrt{a-b} \sqrt{a+b}}+\frac{x (A b-a B)}{b^2}+\frac{B \sin (c+d x)}{b d} \]

[Out]

((A*b - a*B)*x)/b^2 - (2*a*(A*b - a*B)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b]*b^2*Sq
rt[a + b]*d) + (B*Sin[c + d*x])/(b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.174094, antiderivative size = 89, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {2968, 3023, 12, 2735, 2659, 205} \[ -\frac{2 a (A b-a B) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^2 d \sqrt{a-b} \sqrt{a+b}}+\frac{x (A b-a B)}{b^2}+\frac{B \sin (c+d x)}{b d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x]),x]

[Out]

((A*b - a*B)*x)/b^2 - (2*a*(A*b - a*B)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b]*b^2*Sq
rt[a + b]*d) + (B*Sin[c + d*x])/(b*d)

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cos (c+d x) (A+B \cos (c+d x))}{a+b \cos (c+d x)} \, dx &=\int \frac{A \cos (c+d x)+B \cos ^2(c+d x)}{a+b \cos (c+d x)} \, dx\\ &=\frac{B \sin (c+d x)}{b d}+\frac{\int \frac{(A b-a B) \cos (c+d x)}{a+b \cos (c+d x)} \, dx}{b}\\ &=\frac{B \sin (c+d x)}{b d}+\frac{(A b-a B) \int \frac{\cos (c+d x)}{a+b \cos (c+d x)} \, dx}{b}\\ &=\frac{(A b-a B) x}{b^2}+\frac{B \sin (c+d x)}{b d}-\frac{(a (A b-a B)) \int \frac{1}{a+b \cos (c+d x)} \, dx}{b^2}\\ &=\frac{(A b-a B) x}{b^2}+\frac{B \sin (c+d x)}{b d}-\frac{(2 a (A b-a B)) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^2 d}\\ &=\frac{(A b-a B) x}{b^2}-\frac{2 a (A b-a B) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{\sqrt{a-b} b^2 \sqrt{a+b} d}+\frac{B \sin (c+d x)}{b d}\\ \end{align*}

Mathematica [A]  time = 0.195344, size = 85, normalized size = 0.96 \[ \frac{-\frac{2 a (a B-A b) \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )}{\sqrt{b^2-a^2}}+(c+d x) (A b-a B)+b B \sin (c+d x)}{b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x]),x]

[Out]

((A*b - a*B)*(c + d*x) - (2*a*(-(A*b) + a*B)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/Sqrt[-a^2 +
 b^2] + b*B*Sin[c + d*x])/(b^2*d)

________________________________________________________________________________________

Maple [B]  time = 0.116, size = 172, normalized size = 1.9 \begin{align*} 2\,{\frac{B\tan \left ( 1/2\,dx+c/2 \right ) }{bd \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) }}+2\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) A}{bd}}-2\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) Ba}{{b}^{2}d}}-2\,{\frac{aA}{bd\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}\arctan \left ({\frac{\tan \left ( 1/2\,dx+c/2 \right ) \left ( a-b \right ) }{\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}} \right ) }+2\,{\frac{B{a}^{2}}{{b}^{2}d\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}\arctan \left ({\frac{\tan \left ( 1/2\,dx+c/2 \right ) \left ( a-b \right ) }{\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x)

[Out]

2/d/b*B*tan(1/2*d*x+1/2*c)/(1+tan(1/2*d*x+1/2*c)^2)+2/d/b*arctan(tan(1/2*d*x+1/2*c))*A-2/d/b^2*arctan(tan(1/2*
d*x+1/2*c))*B*a-2/d*a/b/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*A+2/d*a^2/b^2
/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*B

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.86228, size = 689, normalized size = 7.74 \begin{align*} \left [-\frac{2 \,{\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} d x -{\left (B a^{2} - A a b\right )} \sqrt{-a^{2} + b^{2}} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) +{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt{-a^{2} + b^{2}}{\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - 2 \,{\left (B a^{2} b - B b^{3}\right )} \sin \left (d x + c\right )}{2 \,{\left (a^{2} b^{2} - b^{4}\right )} d}, -\frac{{\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} d x -{\left (B a^{2} - A a b\right )} \sqrt{a^{2} - b^{2}} \arctan \left (-\frac{a \cos \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) -{\left (B a^{2} b - B b^{3}\right )} \sin \left (d x + c\right )}{{\left (a^{2} b^{2} - b^{4}\right )} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

[-1/2*(2*(B*a^3 - A*a^2*b - B*a*b^2 + A*b^3)*d*x - (B*a^2 - A*a*b)*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) +
(2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*
x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) - 2*(B*a^2*b - B*b^3)*sin(d*x + c))/((a^2*b^2 - b^4)*d), -((B*a^3 - A*a^
2*b - B*a*b^2 + A*b^3)*d*x - (B*a^2 - A*a*b)*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin
(d*x + c))) - (B*a^2*b - B*b^3)*sin(d*x + c))/((a^2*b^2 - b^4)*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.29543, size = 192, normalized size = 2.16 \begin{align*} -\frac{\frac{{\left (B a - A b\right )}{\left (d x + c\right )}}{b^{2}} - \frac{2 \, B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )} b} + \frac{2 \,{\left (B a^{2} - A a b\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{\sqrt{a^{2} - b^{2}} b^{2}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

-((B*a - A*b)*(d*x + c)/b^2 - 2*B*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 + 1)*b) + 2*(B*a^2 - A*a*b)*(p
i*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sq
rt(a^2 - b^2)))/(sqrt(a^2 - b^2)*b^2))/d